home *** CD-ROM | disk | FTP | other *** search
Text File | 1996-02-12 | 27.4 KB | 1,035 lines |
- Frequently Asked Questions (FAQS);faqs.472
-
-
-
- ==> logic/locks.and.boxes.p <==
- You want to send a valuable object to a friend. You have a box which
- is more than large enough to contain the object. You have several
- locks with keys. The box has a locking ring which is more than large enough
- to have a lock attached. But your friend does not have the key to any
- lock that you have. How do you do it?
-
-
- ==> logic/locks.and.boxes.s <==
- Attach a lock to the ring. Send it to her. She attaches her own lock
- and sends it back. You remove your lock and send it back to her. She
- removes her lock.
-
- ==> logic/mixing.p <==
- Start with a half cup of tea and a half cup of coffee. Take one tablespoon
- of the tea and mix it in with the coffee. Take one tablespoon of this mixture
- and mix it back in with the tea. Which of the two cups contains more of its
- original contents?
-
- ==> logic/mixing.s <==
- Mixing Liquids
-
- The two cups end up with the same volume of liquid they started with. The same
- amount of tea was moved to the coffee cup as coffee to the teacup. Therefore
- each cup contains the same amount of its original contents.
-
- ==> logic/number.p <==
- Mr. S. and Mr. P. are both perfect logicians, being able to correctly deduce
- any truth from any set of axioms. Two integers (not necessarily unique) are
- somehow chosen such that each is within some specified range. Mr. S.
- is given the sum of these two integers; Mr. P. is given the product of these
- two integers. After receiving these numbers, the two logicians do not
- have any communication at all except the following dialogue:
- <<1>> Mr. P.: I do not know the two numbers.
- <<2>> Mr. S.: I knew that you didn't know the two numbers.
- <<3>> Mr. P.: Now I know the two numbers.
- <<4>> Mr. S.: Now I know the two numbers.
-
- Given that the above statements are absolutely truthful, what are the two
- numbers?
-
- ==> logic/number.s <==
- The answer depends upon the ranges from which the numbers are chosen.
-
- The unique solution for the ranges [2,62] through [2,500+] is:
-
- SUM PRODUCT X Y
- 17 52 4 13
-
- The unique solution for the ranges [3,94] through [3,500+] is:
-
- SUM PRODUCT X Y
- 29 208 13 16
-
- There are no unique solutions for the ranges starting with 1,
- and there are no solutions for ranges starting with numbers above 3.
-
- A program to compute the possible pairs is included below.
-
- #include <stdio.h>
-
- /*
-
- BEGINNING OF PROBLEM STATEMENT:
- Mr. S. and Mr. P. are both perfect logicians, being able to correctly deduce
- any truth from any set of axioms. Two integers (not necessarily unique) are
- somehow chosen such that each is within some specified range. Mr. S.
- is given the sum of these two integers; Mr. P. is given the product of these
- two integers. After receiving these numbers, the two logicians do not
- have any communication at all except the following dialogue:
- <<1>> Mr. P.: I do not know the two numbers.
- <<2>> Mr. S.: I knew that you didn't know the two numbers.
- <<3>> Mr. P.: Now I know the two numbers.
- <<4>> Mr. S.: Now I know the two numbers.
-
- Given that the above statements are absolutely truthful, what are the two
- numbers?
-
- END OF PROBLEM STATEMENT
-
- */
-
- #define SMALLEST_MIN 1
- #define LARGEST_MIN 10
- #define SMALLEST_MAX 50
- #define LARGEST_MAX 500
-
- long P[(LARGEST_MAX + 1) * (LARGEST_MAX + 1)]; /* products */
- long S[(LARGEST_MAX + 1) + (LARGEST_MAX + 1)]; /* sums */
-
- find(long min, long max)
- {
- long i, j;
- /*
- * count factorizations in P[]
- * all P[n] > 1 satisfy <<1>>.
- */
- for(i = 0; i <= max * max; ++i)
- P[i] = 0;
-
- for(i = min; i <= max; ++i)
- for(j = i; j <= max; ++j)
- ++P[i * j];
-
- /*
- * decompose possible SUMs and check factorizations
- * all S[n] == min - 1 satisfy <<2>>.
- */
- for(i = min + min; i <= max + max; ++i) {
-
- for(j = i / 2; j >= min; --j)
- if(P[j * (i - j)] < 2)
- break;
-
- S[i] = j;
- }
-
- /*
- * decompose SUMs which satisfy <<2>> and see which products
- * they produce. All (P[n] / 1000 == 1) satisfy <<3>>.
- */
- for(i = min + min; i <= max + max; ++i)
- if(S[i] == min - 1)
- for(j = i / 2; j >= min; --j)
- if(P[j * (i - j)] > 1)
- P[j * (i - j)] += 1000;
- /*
- * decompose SUMs which satisfy <<2>> again and see which products
- * satisfy <<3>>. Any (S[n] == 999 + min) satisfies <<4>>
- */
- for(i = min + min; i <= max + max; ++i)
- if(S[i] == min - 1)
- for(j = i / 2; j >= min; --j)
- if(P[j * (i - j)] / 1000 == 1)
- S[i] += 1000;
- /*
- * find the answer(s) and print them
- */
- printf("[%d,%d]\n",min,max);
- for(i = min + min; i <= max + max; ++i)
- if(S[i] == 999 + min)
- for(j = i / 2; j >= min; --j)
- if(P[j * (i - j)] / 1000 == 1)
- printf("{ %d %d }: S = %d, P = %d\n",
- i - j, j, i, (i - j) * j);
- }
-
- main()
- {
- long min, max;
-
- for (min = SMALLEST_MIN; min <= LARGEST_MIN; min ++)
- for (max = SMALLEST_MAX; max <= LARGEST_MAX; max++)
- find(min,max);
- }
-
- -------------------------------------------------------------------------
- = Jeff Kenton (617) 894-4508 =
- = jkenton@world.std.com =
- -------------------------------------------------------------------------
-
- ==> logic/riddle.p <==
- Who makes it, has no need of it. Who buys it, has no use for it. Who
- uses it can neither see nor feel it.
-
- Tell me what a dozen rubber trees with thirty boughs on each might be?
-
- As I went over London Bridge
- I met my sister Jenny
- I broke her neck and drank her blood
- And left her standing empty
-
- It is said among my people that some things are improved by death.
- Tell me, what stinks while living, but in death, smells good?
-
- All right. Riddle me this: what goes through the door without
- pinching itself? What sits on the stove without burning itself? What
- sits on the table and is not ashamed?
-
- What work is it that the faster you work, the longer it is before
- you're done, and the slower you work, the sooner you're finished?
-
- Whilst I was engaged in sitting I spied the dead carrying the living.
-
- I know a word of letters three. Add two, and fewer there will be.
-
- I give you a group of three. One is sitting down, and will never get
- up. The second eats as much as is given to him, yet is always hungry.
- The third goes away and never returns.
-
- Whoever makes it, tells it not. Whoever takes it, knows it not. And
- whoever knows it wants it not.
-
- Two words, my answer is only two words.
- To keep me, you must give me.
-
- Sir, I bear a rhyme excelling
- In mystic force and magic spelling
- Celestial sprites elucidate
- All my own striving can't relate
-
- There is not wind enough to twirl
- That one red leaf, nearest of its clan,
- Which dances as often as dance it can.
-
- Half-way up the hill, I see thee at last
- Lying beneath me with thy sounds and sights --
- A city in the twilight, dim and vast,
- With smoking roofs, soft bells, and gleaming lights.
-
- I am, in truth, a yellow fork
- From tables in the sky
- By inadvertent fingers dropped
- The awful cutlery.
- Of mansions never quite disclosed
- And never quite concealed
- The apparatus of the dark
- To ignorance revealed.
-
- Many-maned scud-thumper,
- Maker of worn wood,
- Shrub-ruster,
- Sky-mocker,
- Rave!
-
- Make me thy lyre, even as the forests are.
- What if my leaves fell like its own --
- The tumult of thy mighty harmonies
- Will take from both a deep autumnal tone.
-
- This darksome burn, horseback brown,
- His rollock highroad roaring down,
- In coop and in comb the fleece of his foam
- Flutes and low to the body falls home.
-
- I've measured it from side to side,
- 'Tis three feet long and two feet wide.
- It is of compass small, and bare
- To thirsty suns and parching air.
-
- My love, when I gaze on thy beautiful face,
- Careering along, yet always in place --
- The thought has often come into my mind
- If I ever shall see thy glorious behind.
-
- Then all thy feculent majesty recalls
- The nauseous mustiness of forsaken bowers,
- The leprous nudity of deserted halls --
- The positive nastiness of sullied flowers.
- And I mark the colours, yellow and black,
- That fresco thy lithe, dictatorial thighs.
-
- When young, I am sweet in the sun.
- When middle-aged, I make you gay.
- When old, I am valued more than ever.
-
- I am always hungry,
- I must always be fed,
- The finger I lick
- Will soon turn red.
-
- All about, but cannot be seen,
- Can be captured, cannot be held,
- No throat, but can be heard.
-
- I am only useful
- When I am full,
- Yet I am always
- Full of holes.
-
- If you break me
- I do not stop working,
- If you touch me
- I may be snared,
- If you lose me
- Nothing will matter.
-
- If a man carried my burden
- He would break his back.
- I am not rich,
- But leave silver in my track.
-
- Until I am measured
- I am not known,
- Yet how you miss me
- When I have flown.
-
- I drive men mad
- For love of me,
- Easily beaten,
- Never free.
-
- When set loose
- I fly away,
- Never so cursed
- As when I go astray.
-
- I go around in circles
- But always straight ahead,
- Never complain
- No matter where I am led.
-
- Lighter than what
- I am made of,
- More of me is hidden
- Than is seen.
-
- I turn around once,
- What is out will not get in.
- I turn around again,
- What is in will not get out.
-
- Each morning I appear
- To lie at your feet,
- All day I will follow
- No matter how fast you run,
- Yet I nearly perish
- In the midday sun.
-
- Weight in my belly,
- Trees on my back,
- Nails in my ribs,
- Feet I do lack.
-
- Bright as diamonds,
- Loud as thunder,
- Never still,
- A thing of wonder.
-
- My life can be measured in hours,
- I serve by being devoured.
- Thin, I am quick
- Fat, I am slow
- Wind is my foe.
-
- To unravel me
- You need a simple key,
- No key that was made
- By locksmith's hand,
- But a key that only I
- Will understand.
-
- I am seen in the water
- If seen in the sky,
- I am in the rainbow,
- A jay's feather,
- And lapis lazuli.
-
- Glittering points
- That downward thrust,
- Sparkling spears
- That never rust.
-
- You heard me before,
- Yet you hear me again,
- Then I die,
- 'Till you call me again.
-
- Three lives have I.
- Gentle enough to soothe the skin,
- Light enough to caress the sky,
- Hard enough to crack rocks.
-
- You can see nothing else
- When you look in my face,
- I will look you in the eye
- And I will never lie.
-
- Lovely and round,
- I shine with pale light,
- grown in the darkness,
- A lady's delight.
-
- At the sound of me, men may dream
- Or stamp their feet
- At the sound of me, women may laugh
- Or sometimes weep
-
- When I am filled
- I can point the way,
- When I am empty
- Nothing moves me,
- I have two skins
- One without and one within.
-
- My tines be long,
- My tines be short
- My tines end ere
- My first report.
- What am I?
-
- ==> logic/riddle.s <==
- Who makes it, has no need of it. Who buys it, has no use for it. Who
- uses it can neither see nor feel it.
-
- coffin
-
- Tell me what a dozen rubber trees with thirty boughs on each might be?
-
- months of the year
-
- As I went over London Bridge
- I met my sister Jenny
- I broke her neck and drank her blood
- And left her standing empty
-
- gin
-
- It is said among my people that some things are improved by death.
- Tell me, what stinks while living, but in death, smells good?
-
- pig
-
- All right. Riddle me this: what goes through the door without
- pinching itself? What sits on the stove without burning itself? What
- sits on the table and is not ashamed?
-
- the sun
-
- What work is it that the faster you work, the longer it is before
- you're done, and the slower you work, the sooner you're finished?
-
- roasting meat on a spit
-
- Whilst I was engaged in sitting I spied the dead carrying the living.
-
- a ship
-
- I know a word of letters three. Add two, and fewer there will be.
-
- 'few'
-
- I give you a group of three. One is sitting down, and will never get
- up. The second eats as much as is given to him, yet is always hungry.
- The third goes away and never returns.
-
- stove, fire, and smoke
-
- Whoever makes it, tells it not. Whoever takes it, knows it not. And
- whoever knows it wants it not.
-
- counterfeit money
-
- Two words, my answer is only two words.
- To keep me, you must give me.
-
- your word
-
- Sir, I bear a rhyme excelling
- In mystic force and magic spelling
- Celestial sprites elucidate
- All my own striving can't relate
-
- ???
-
- There is not wind enough to twirl
- That one red leaf, nearest of its clan,
- Which dances as often as dance it can.
-
- the sun, Samuel Taylor Coleridge
-
- Half-way up the hill, I see thee at last
- Lying beneath me with thy sounds and sights --
- A city in the twilight, dim and vast,
- With smoking roofs, soft bells, and gleaming lights.
-
- the past, Longfellow
-
- I am, in truth, a yellow fork
- From tables in the sky
- By inadvertent fingers dropped
- The awful cutlery.
- Of mansions never quite disclosed
- And never quite concealed
- The apparatus of the dark
- To ignorance revealed.
-
- lightning, Emily Dickinson
-
- Many-maned scud-thumper,
- Maker of worn wood,
- Shrub-ruster,
- Sky-mocker,
- Rave!
- Portly pusher,
- Wind-slave.
-
- the ocean, John Updike
-
- Make me thy lyre, even as the forests are.
- What if my leaves fell like its own --
- The tumult of thy mighty harmonies
- Will take from both a deep autumnal tone.
-
- the west wind, Percy Bysshe Shelley
-
- This darksome burn, horseback brown,
- His rollock highroad roaring down,
- In coop and in comb the fleece of his foam
- Flutes and low to the body falls home.
-
- river, Gerard Manley Hopkins
-
- I've measured it from side to side,
- 'Tis three feet long and two feet wide.
- It is of compass small, and bare
- To thirsty suns and parching air.
-
- the grave of a child, Wordsworth
-
- My love, when I gaze on thy beautiful face,
- Careering along, yet always in place --
- The thought has often come into my mind
- If I ever shall see thy glorious behind.
-
- the moon, Sir Edmund Gosse
-
- Then all thy feculent majesty recalls
- The nauseous mustiness of forsaken bowers,
- The leprous nudity of deserted halls --
- The positive nastiness of sullied flowers.
- And I mark the colours, yellow and black,
- That fresco thy lithe, dictatorial thighs.
-
- spider, Francis Saltus Saltus
-
- When young, I am sweet in the sun.
- When middle-aged, I make you gay.
- When old, I am valued more than ever.
-
- wine
-
- I am always hungry,
- I must always be fed,
- The finger I lick
- Will soon turn red.
-
- fire
-
- All about, but cannot be seen,
- Can be captured, cannot be held,
- No throat, but can be heard.
-
- wind
-
- I am only useful
- When I am full,
- Yet I am always
- Full of holes.
-
- sieve (or sponge)
-
- If you break me
- I do not stop working,
- If you touch me
- I may be snared,
- If you lose me
- Nothing will matter.
-
- heart
-
- If a man carried my burden
- He would break his back.
- I am not rich,
- But leave silver in my track.
-
- snail
-
- Until I am measured
- I am not known,
- Yet how you miss me
- When I have flown.
-
- time
-
- I drive men mad
- For love of me,
- Easily beaten,
- Never free.
-
- gold
-
- When set loose
- I fly away,
- Never so cursed
- As when I go astray.
-
- ?
-
- I go around in circles
- But always straight ahead,
- Never complain
- No matter where I am led.
-
- wagon wheel
-
- Lighter than what
- I am made of,
- More of me is hidden
- Than is seen.
-
- iceberg
-
- I turn around once,
- What is out will not get in.
- I turn around again,
- What is in will not get out.
-
- stopcock
-
- Each morning I appear
- To lie at your feet,
- All day I will follow
- No matter how fast you run,
- Yet I nearly perish
- In the midday sun.
-
- shadow
-
- Weight in my belly,
- Trees on my back,
- Nails in my ribs,
- Feet I do lack.
-
- ship
-
- Bright as diamonds,
- Loud as thunder,
- Never still,
- A thing of wonder.
-
- waterfall? (fireworks?)
-
- My life can be measured in hours,
- I serve by being devoured.
- Thin, I am quick
- Fat, I am slow
- Wind is my foe.
-
- candle
-
- To unravel me
- You need a simple key,
- No key that was made
- By locksmith's hand,
- But a key that only I
- Will understand.
-
- cipher
-
- I am seen in the water
- If seen in the sky,
- I am in the rainbow,
- A jay's feather,
- And lapis lazuli.
-
- blue
-
- Glittering points
- That downward thrust,
- Sparkling spears
- That never rust.
-
- icicle
-
- You heard me before,
- Yet you hear me again,
- Then I die,
- 'Till you call me again.
-
- echo
-
- Three lives have I.
- Gentle enough to soothe the skin,
- Light enough to caress the sky,
- Hard enough to crack rocks.
-
- water
-
- You can see nothing else
- When you look in my face,
- I will look you in the eye
- And I will never lie.
-
- your reflection
-
- Lovely and round,
- I shine with pale light,
- grown in the darkness,
- A lady's delight.
-
- pearl
-
- At the sound of me, men may dream
- Or stamp their feet
- At the sound of me, women may laugh
- Or sometimes weep
-
- music
-
- When I am filled
- I can point the way,
- When I am empty
- Nothing moves me,
- I have two skins
- One without and one within.
-
- sails?
-
- My tines be long,
- My tines be short
- My tines end ere
- My first report.
- What am I?
-
- lightning
-
- ==> logic/river.crossing.p <==
- Three humans, one big monkey and two small monkeys are to cross a river:
- a) Only humans and the big monkey can row the boat.
- b) At all times, the number of human on either side of the
- river must be GREATER OR EQUAL to the number of monkeys
- on THAT side. ( Or else the humans will be eaten by the monkeys!)
-
- ==> logic/river.crossing.s <==
- The three columns represent the left bank, the boat, and the right bank
- respectively. The < or > indicates the direction of motion of the boat.
-
- HHHMmm . .
- HHHm Mm> .
- HHHm <M m
- HHH Mm> m
- HHH <M mm
- HM HH> mm
- HM <Hm Hm
- Hm HM> Hm
- Hm <Hm HM
- mm HH> HM
- mm <M HHH
- m Mm> HHH
- m <M HHHm
- . Mm> HHHm
- . . HHHMmm
-
- ==> logic/ropes.p <==
- Two fifty foot ropes are suspended from a forty foot ceiling, about
- twenty feet apart. Armed with only a knife, how much of the rope can
- you steal?
-
- ==> logic/ropes.s <==
- Almost all of it. Tie the ropes together. Climb up one of them. Tie
- a loop in it as close as possible to the ceiling. Cut it below the
- loop. Run the rope through the loop and tie it to your waist. Climb
- the other rope (this may involve some swinging action). Pull the rope
- going through the loop tight and cut the other rope as close as
- possible to the ceiling. You will swing down on the rope through the
- loop. Lower yourself to the ground by letting out rope. Pull the
- rope through the loop. You will have nearly all the rope.
-
- Xref: bloom-picayune.mit.edu rec.puzzles:18147 news.answers:3078
- Newsgroups: rec.puzzles,news.answers
- Path: bloom-picayune.mit.edu!enterpoop.mit.edu!snorkelwacker.mit.edu!usc!wupost!gumby!destroyer!uunet!questrel!chris
- From: uunet!questrel!chris (Chris Cole)
- Subject: rec.puzzles FAQ, part 12 of 15
- Message-ID: <puzzles-faq-12_717034101@questrel.com>
- Followup-To: rec.puzzles
- Summary: This posting contains a list of
- Frequently Asked Questions (and their answers).
- It should be read by anyone who wishes to
- post to the rec.puzzles newsgroup.
- Sender: chris@questrel.com (Chris Cole)
- Reply-To: uunet!questrel!faql-comment
- Organization: Questrel, Inc.
- References: <puzzles-faq-1_717034101@questrel.com>
- Date: Mon, 21 Sep 1992 00:09:42 GMT
- Approved: news-answers-request@MIT.Edu
- Expires: Sat, 3 Apr 1993 00:08:21 GMT
- Lines: 1136
-
- Archive-name: puzzles-faq/part12
- Last-modified: 1992/09/20
- Version: 3
-
- ==> logic/same.street.p <==
- Sally and Sue have a strong desire to date Sam. They all live on the
- same street yet neither Sally or Sue know where Sam lives. The houses
- on this street are numbered 1 to 99.
-
- Sally asks Sam "Is your house number a perfect square?". He answers.
- Then Sally asks "Is is greater than 50?". He answers again.
-
- Sally thinks she now knows the address of Sam's house and decides to
- visit.
-
- When she gets there, she finds out she is wrong. This is not
- surprising, considering Sam answered only the second question
- truthfully.
-
- Sue, unaware of Sally's conversation, asks Sam two questions.
- Sue asks "Is your house number a perfect cube?". He answers.
- She then asks "Is it greater than 25?". He answers again.
-
- Sue thinks she knows where Sam lives and decides to pay him a visit.
- She too is mistaken as Sam once again answered only the second
- question truthfully.
-
- If I tell you that Sam's number is less than Sue's or Sally's,
- and that the sum of their numbers is a perfect square multiplied
- by two, you should be able to figure out where all three of them
- live.
-
- ==> logic/same.street.s <==
- Sally and Sue have a strong desire to date Sam. They all live on the
- same street yet neither Sally or Sue know where Sam lives. The houses
- on this street are numbered 1 to 99.
-
- Sally asks Sam "Is your house number a perfect square?". He answers.
- Then Sally asks "Is is greater than 50?". He answers again.
-
- Sally thinks she now knows the address of Sam's house and decides to
- visit.
-
- Since Sally thinks that she has enough information,
- I deduce that Sam answered that his house number was
- a perfect square greater than 50. There are two
- of these {64,81} and Sally must live in one of them in
- order to have decided she knew where Sam lives.
-
- When she gets there, she finds out she is wrong. This is not
- surprising, considering Sam answered only the second question
- truthfully.
-
- So Sam's house number is greater than 50, but not
- a perfect square.
-
- Sue, unaware of Sally's conversation, asks Sam two questions.
- Sue asks "Is your house number a perfect cube?". He answers.
- She then asks "Is it greater than 25?". He answers again.
-
- Observation: perfect cubes greater than 25 are
- {27, 64}, less than 25 are {1,8}.
-
- Sue thinks she knows where Sam lives and decides to pay him a visit.
- She too is mistaken as Sam once again answered only the second
- question truthfully.
-
- Since Sam's house number is greater than 50, he told Sue that it
- was greater than 25 as well. Since Sue thought she knew which house
- was his, she must live in either of {27,64}.
-
- If I tell you that Sam's number is less than Sue's or Sally's,
-
- Since Sam's number is greater than 50, and Sue's is even
- bigger, she must live in 64. Assuming Sue and Sally are
- not roommates (although awkward social situations of this
- kind are not without precedent), Sally lives in 81.
-
- and that the sum of their numbers is a perfect square multiplied
- by two, you should be able to figure out where all three of them
- live.
-
- Sue + Sally + Sam = 2 p^2 for p an integer
- 64 + 81 + Sam = 2 p^2
-
- Applying the constraint 50 < Sam < 64, looks like Sam = 55 (p = 10).
-
- In summary,
- Sam = 55
- Sue = 64
- Sally = 81
-
- -- Tom Smith <tom@ulysses.att.com>
-
- ==> logic/self.ref.p <==
- Find a number ABCDEFGHIJ such that A is the count of how many 0's are in the
- number, B is the number of 1's, and so on.
-
- ==> logic/self.ref.s <==
- 6210001000
-
- For other numbers of digits:
-
- n=1: no sequence possible
- n=2: no sequence possible
- n=3: no sequence possible
- n=4: 1210, 2020
- n=5: 21200
- n=6: no sequence possible
- n=7: 3211000
- n=8: 42101000
- n=9: 521001000
- n=10: 6210001000
- n>10: (n-4), 2, 1, 0 * (n-7), 1, 0, 0, 0
-
- No 1, 2, or 3 digit numbers are possible. Letting x_i be the ith
- digit, starting with 0, we see that (1) x_0 + ... + x_n = n+1 and
- (2) 0*x_0 + ... + n*x_n = n+1, where n+1 is the number of digits.
-
- I'll first prove that x_0 > n-3 if n>4. Assume not, then this
- implies that at least four of the x_i with i>0 are non-zero. But
- then we would have \sum_i i*x_i >= 10 by (2), impossible unless n=9,
- but it isn't possible in this case (51111100000 isn't valid).
-
- Now I'll prove that x_0 < n-1. x_0 clearly can't equal n; assume
- x_0 = n-1 ==> x_{n-1} = 1 by (2) if n>3. Now only one of the
- remaining x_i may be non-zero, and we must have that x_0 + ... + x_n
- = n+1, but since x_0 + x_{n-1} = n ==> the remaining x_i = 1 ==> by
- (2) that x_2 = 1. But this can't be, since x_{n-1} = 1 ==> x_1>0.
- Now assuming x_0 = n-2 we conclude that x_{n-2} = 1 by (2) if n>5
- ==> x_1 + ... + x_{n-3} + x_{n-1} + x_n = 2 and 1*x_1 + ... +
- (n-3)*x_{n-3} + (n-1)*x_{n-1} + n*x_n = 3 ==> x_1=1 and x_2=1,
- contradiction.
-
- Case n>5:
-
- We have that x_0 = n-3 and if n>=7 ==> x_{n-3}=1 ==> x_1=2 and
- x_2=1 by (1) and (2). For the case n=6 we see that x_{n-3}=2
- leads to an easy contradiction, and we get the same result. The
- cases n=4,5 are easy enough to handle, and lead to the two solutions
- above.
- --
- -- clong@romulus.rutgers.edu (Chris Long)
-
- ==> logic/situation.puzzles.outtakes.p <==
- The following puzzles have been removed from my situation puzzles list,
- or never made it onto the list in the first place. There are a wide
- variety of reasons for the non-inclusion: some I think are obvious,
- some don't have enough of a story, some involve gimmicks that annoy me,
- some I think are riddles rather than situation puzzles, and some are
- so contrary to reality as to be unplayable. Basically, what it comes
- down to is that I don't like these enough to put them on my list. If
- you think of ways to make any of them more palatable to me, or to
- reorganize my entire list, or if you just want to chat, by all means
- contact me at zorn@apple.com.
- --jed e. hartman, 5/5/92
-
- -----------------------------------------
-
- Contra-reality puzzles, or, "That's not the way it works!"
-
- 2.10. A man is sitting in a train compartment. He sees a three-
- fingered hand through the compartment window, in the hallway of the
- train. He opens the compartment door and shoots the person with the
- three-fingered hand, but he goes free. (Michael Bernstein)
-
- 2.61. A man ran into a fire, and lived. A man stayed where there was
- no fire, and died. (Eric Wang original)
-
- 2.50. The pope is giving a speech. A man in the audience shoots the
- mayor who is behind the pope. (PRO)
-
- Date: 2 Feb 92 23:05:11 GMT
- In article <64023@netnews.upenn.edu>, weemba@libra (Matthew P Wiener) writes:
- >Here's [one] I made up years ago: "She stopped having sex. She died."
-
- 1.37. A holy man is dead in a room. (Perry Deess original)
-
- -----------------------------------------
-
- Clocks, calendars, money, and other numerical trivia:
-
- 2.15. Two people are talking long distance on the phone; one is in an
- East-Coast state, the other is in a West-Coast state. The first asks
- the other "What time is it?", hears the answer, and says, "That's funny.
- It's the same time here!" (EMS)
-
- 2.19. A woman goes into a convenience store to buy a can of Coke. She
- pays for it with a $20 bill and receives $22 in change. (MI; partial MB
- wording)
-
- 2.20. A newspaper reported that Jacques Dubois finished first in the
- walking race held in Paris. The number of miles he walked was given
- as 62,137. The article was not in error. (AR, quoting Richard Fowell;
- MB wording)
-
- Organization: Penn State University
- Date: Tuesday, 4 Dec 1990 20:08:00 EST
- From: SCOTT MATTHEWS <SDM119@psuvm.psu.edu>
- A man goes to a hardware store to buy a certain item. He asks the salesman
- how much this item costs to which he answers, "They are 3 for $1.00." The man
- say, "Okay I'll take 100," to which the salesman correctly replies, "That will
- be $1.00." The man pays $1.00 and leaves satisfied. What is the item.
-
- >"A man, his son, and his grandson had their first birthday together."
- (Matthew P Wiener original)
-
- -----------------------------------------
-
- Just too weird and/or random and/or silly for me:
-
- 2.17. A woman walks up to a door and knocks. Another woman answers the
- door. The woman outside kills the woman inside. (GH)
-
- 2.59. A man is lying dead in a pool of blood and glass. (PRO)
-
- 2.60. The seals came up to do their show but immediately dove back into
- the water. (PRO)
-
- 2.58. A raft carrying passengers took a trip down a river. None of the
- passengers made it home alive. (CR; partial JM wording)
-
- -----------------------------------------
-
- Confusing the map with the territory, or, call by reference:
-
- 2.22. In his own home a man watches as a woman dies, yet does nothing
- to save her. (MN)
-
- 2.39. King Henry VIII is lying at the bottom of the stairs with a gash
- across his face. (PRO)
-
- 2.40. A man travels to twenty countries and stays in each country for a
- month. During this time he never sees the light of day. (PRO)
-
-
- -----------------------------------------
-
- How to prove your audience are sexists:
-
- 2.48. A boy and his father are injured in a car accident. Both are
- taken to a hospital. The father dies at arrival, but the boy lives
- and is taken to surgery. A grey-haired, bespectacled surgeon looks at
- the boy and says, "I cannot operate on this boy -- he's my son." (JV)
-
- 2.49. A husband coming home hears his wife call "Bill, don't kill me!".
- He walks in and finds his wife dead. Inside are a postman, a doctor,
- and a lawyer, none of whom the husband knows. The husband immediately
- realizes the postman killed his wife. (EMS; partial JM wording)
-
- -----------------------------------------
-